Smallsat with Offset Reflector Antenna
DOI:
https://doi.org/10.55972/spectrum.v23i1.385Keywords:
Offset Reflector Antenna, Airspace SAR, Small satellites, Space SystemsAbstract
The employment of smallsats have been increasingly in the last years. Features like low cost, more accessible technologies, and the miniaturization of engineering components are driving the trends to smaller platforms. Following this trend, new spaceborne SAR (Synthetic Aperture Radar) systems have been adapted to suit the new architectures. This paper presents a new design based on the employment of a mesh deployable offset reflector antenna in association with a small spacecraft. In the analysis are taken into account some considerations as geometry, orbit and attachment to the satellite which reinforce the advantages of using mesh offset reflector antennas.
References
W. J. Larson and J. R. Wertz, Space Mission Analysis and Design, 3th ed. Dordrecht: Microcosm Press, 2005.
G. Krieger et al., “Advanced Concepts for High-Resolution Wide-Swath SAR Imaging Multi-Channel ScanSAR Mode,” pp. 524–527, 2010.
T. Freeman, P. Rosen, B. Johnson, R. Jordan, and Y. Shen, “DESDynI A NASA Mission for Ecosystems , Solid Earth and Cryosphere Science,” 2008.
A. Moreira, P. Prats-iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A Tutorial on Synthetic Aperture Radar,” Geoscience and Remote Sensing Magazine, IEEE, no. 1, pp. 6–43, 2013.
a. Freeman et al., “SweepSAR: Beam-forming on receive using a reflector-phased array feed combination for spaceborne SAR,” IEEE Natl. Radar Conf. - Proc., no. 818, 2009.
L. J. Cantafio, Space-based Radar Handbook. Norwood, MA 02062: Artech House Radar Library, 1989.
W. A. Imbriale, S. S. Gao, and L. Boccia, Space Antenna Handbook. Noida, India: John Wiley & Sons, Inc, 2012.
D. et al. Entekhabi, SMAP Handbook. Pasadena, California: National Aeronautics and Space Administration - NASA, 2014.
Z. Liangbo, L. Jie, Z. Changjiang, and W. Zhenxing, “Considerations of spaceborne SAR system design,” in Radar Conference 2013, IET International, 2013, vol. 251, pp. 1–6, doi: 10.1049/cp.2013.0170.
G. Tibert, “Deployable Tensegrity Structures for Space Applications,” Royal Institute of Technology, 2002.
I. Hajnsek, “Tandem-L : Science Requirements and Mission Concept,” pp. 1255–1258, 2014.
A. Moreira, I. Hajnsek, G. Krieger, K. Papathanassiou, and M. Eineder, “Tandem-L: Monitoring the Earth’s Dynamics with InSAR and Pol-InSAR,” in Proc. of “4th Int. Workshop on SCience and Applications of SAR Polarimetry and Polarimetric Interferometry - PolInSAR 2009,” 2009, no. April, pp. 26–30, [Online]. Available: http://elib.dlr.de/58372/1/Paper-Tandem-L-Pol-InSAR-2009.pdf.
M. S. M. Costa and D. Fernandes, “Análise do Emprego de uma Constelação de Pequenos Satélites SAR em Vigilância Marítima .,” in XVI Simpósio de Aplicações Operacionais em Áreas de Defesa - XVI SIGE, 2014, pp. 90–95, doi: 10.13140/2.1.1709.7283.
G. Krieger et al., “The Tandem-L Mission Proposal : Monitoring Earth ’ s Dynamics with High Resolution SAR Interferometry,” pp. 0–5, 2009.
G. Krieger, N. Gebert, M. Younis, and A. Moreira, “Advanced synthetic aperture radar based on digital beamforming and waveform diversity,” in Radar Conference, 2008. RADAR ’08. IEEE, 2008, pp. 1–6, doi: 10.1109/RADAR.2008.4720875.
M. Younis, S. Huber, A. Patyuchenko, F. Bordoni, and G. Krieger, “Performance Comparison of Reflector- and Planar-Antenna Based Digital Beam-Forming SAR,” Int. J. Antennas Propag., vol. 2009, pp. 1–13, 2009, doi: 10.1155/2009/614931.
A. Moreira et al., “Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth’s Surface,” IEEE Geoscience and Remote Sensing Magazine, vol. 3, no. 2, pp. 8–23, 2015.
M. Younis, A. Patyuchenko, S. Huber, G. Krieger, and A. Moreira, “A concept for high performance reflector-based Synthetic Aperture Radar,” in Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, 2010, pp. 249–252, doi: 10.1109/IGARSS.2010.5650298.
M. Süss and W. Wiesbeck, “Side-looking synthetic aperture radar system,” EP1241487, 2002.
I. McKenzie, N. Karafolas, and P. Van Loock, “Microphotonics in satellite payloads and platforms,” in International Conference on Optical MEMS and Nanophotonics, 2014, pp. 19–20, doi: 10.1109/OMN.2014.6924518.
R. Sandau, “Status and trends of small satellite missions for Earth observation,” Acta Astronaut., vol. 66, no. 1–2, pp. 1–12, Jan. 2010, doi: 10.1016/j.actaastro.2009.06.008.
R. Sandau, K. Brieß, and M. D’Errico, “Small satellites for global coverage: Potential and limits,” ISPRS J. Photogramm. Remote Sens., vol. 65, no. 6, pp. 492–504, Nov. 2010, doi: 10.1016/j.isprsjprs.2010.09.003.
T. Wahl, G. K. Høye, A. Lyngvi, and B. T. Narheim, “New possible roles of small satellites in maritime surveillance,” Acta Astronaut., vol. 56, no. 2027, pp. 273–277, 2005, doi: 10.1016/j.actaastro.2004.09.025.
S. J. Orfanidis, Electromagnetic Waves and Antennas, vol. 2, no. Rutgers U. New Brunswick, NJ: Rutgers University, 2004.
R. L. Melo, “Digital beamformers applied to reflector based synthetic aperture radar system,” 2013.
J. A. J. Ribeiro, Engenharia de Antenas, fundamentos, projetos e aplicações, 1a. São Paulo, 2012.
S. Huber, “Spaceborne SAR Systems with Digital Beamforming and Reflector Antenna,” 2013.
S. Huber, M. Younis, A. Patyuchenko, and G. Krieger, “Spaceborne Reflector SAR Systems with Digital Beamforming,” Aerosp. Electron. Syst. IEEE Trans., vol. 48, no. 4, pp. 3473–3493, 2012, doi: 10.1109/TAES.2012.6324728.
R. Yang and I. Andrew Corporation, Chicago, “Illuminating curved passive reflector with defocused parabolic antenna,” in WESCON/58 Conference Record (Volume:2 ), 1958, pp. 260–265, doi: 10.1109/WESCON.1958.1150212.
A. D. Olver and J. U. I. Syed, “Variable beamwidth reflector antenna by feed defocusing,” IEE Proc. - Microwaves, Antennas Propag. (Volume142 , Issue 5 ), vol. 142, no. 5, pp. 2–6, 1995, doi: 10.1049/ip-map:19952082.
H. L. Van Trees, Detection, Estimation, and Modulation Theory, Optimum Array Processing. New York, NY: John Wiley & Sons, Inc., 2002.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Márcio Martins da Silva Costa, Rafael Lemos Paes, Angelo Passaro
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.