Comparison between the design criteria for wind load and blast effect – case of high voltage towers

Authors

  • Fausto Batista Mendonça Instituto Tecnológico de Aeronáutica (ITA)
  • Girum Solomon Urgessa George Mason University (GMU)
  • Koshun Iha Instituto Tecnológico de Aeronáutica (ITA)
  • José Atílio Fritz Fidel Rocco Instituto Tecnológico de Aeronáutica (ITA)

DOI:

https://doi.org/10.55972/spectrum.v22i1.242

Keywords:

Energetic materials, Steel frame, Dynamic load

Abstract

Structures behavior under dynamic load have been important design criteria to ensure buildings security. Wind load and blast effect have been responsible to generate some structures collapses in the last years, due to forces of nature or belligerent actions. Comparing the statements of technical standards relating to wild load to predicted blast effects it was possible to notice that blast load were higher than wild load. Results pointed out the need to take in account blast loads during the initial design of the structures. Mainly for buildings with high strategic value for the state during a conflict, like high voltage steel frame towers. Blast field test were recommended in the end of this work, since the results presented were purely theoretical.

References

W. C. L. Silva. (2007). Blast – Efeito da onda de choque no ser humano e nas estruturas. Tese de Mestrado. Instituto Tecnológico de Aeronáutica, São José dos Campos, 107p.

W. Mamrak. (2013). Blast wave propagation in the air and action on rigid obstacles. Master’s Thesis. Faculty of Civil and Environmental Engineering – Poznan University of Technology, Poznan,106p.

W. W. Berning. (1948). “Investigation of the propagation of blast waves over relatively large distance and the damaging possibilities of such propagation.” Ballistic Research Laboratories. Report n° 675. 50p.

Abdelahad F. A. (2008). Analysis of blast/explosion resistant reinforced concrete solid slab and T-beam bridges. Master Science Thesis. Florida Atlantic University. 132p.

N. Toric, A. Harapin, I. Boko. “Experimental verification of a newly developed implicit creep model for steel structures exposed to fire.” Engineering Structures. 57, 2013, p. 116-124.

D. K. Banerjee. “Uncertainties in steel temperatures under fire.” Fire Safety Journal. 61, 2013, p. 65-71.

L. Choe, A. H. Varma, A. Agarwal, A. Surovek. “Fundamental behavior of steel beam-columns and columns under fire loading: experimental evaluation.” Journal of Structural Engineering – ASCE. 137, 2011, p. 954-966.

Disponível em: http://pt.wikipedia.org/wiki/Austenita. Acessado em 14 de maio de 2014, às 15:30h.

A. Agarwal, A. H. Varma. “Fire induced progressive collapse of steel building structures: The role of interior gravity columns.” Engineering Structures. 58, 2014, p. 129-140.

Disponível em: http://www.msrecord.com.br/noticia/ver/41335/chuva-e-vendaval-derruba-9-torres-de-transmissao-de-energia-da-eletrosul. Acessado em 26 de maio de 2014, às 16:00h.

K. de S. Sing. (2009). Análise estática de torres metálicas treliçadas autoportantes para linhas de transmissão. Dissertação de Mestrado. UnB, Brasília, 110p.

Associação Brasileira de Normas Técnicas – ABNT, “NBR 6123: Forças devido ao vento em edificações”, Rio de Janeiro, 1988.

Associação Brasileira de Normas Técnicas – ABNT, “NBR 6120: Cargas para o cálculo de estruturas de edificações”, Rio de Janeiro, 1980.

Published

2021-09-30

How to Cite

[1]
F. Batista Mendonça, G. Solomon Urgessa, K. Iha, and J. Atílio Fritz Fidel Rocco, “Comparison between the design criteria for wind load and blast effect – case of high voltage towers”, Spectrum, vol. 22, no. 1, pp. 42–46, Sep. 2021.

Issue

Section

Weapons Systems and Space Applications

Categories